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Abstract: This paper aims at analyzing dynamic characteristics of human arm movements from the viewpoint of Rie-
mannian distance. In order to evaluate the amount of inertia-induced movement of a multi-joint arm, a measure called
inertia-induced measure is developed. By applying the measure to actual human reaching, it is shown that the smooth
reaching tends to be closer to the inertia-induced movement than the clumsy reaching. From this observation, it is sug-
gested that humans use their own inertia properties efficiently in smooth reaching.

Keywords: Inertia-induced movement, Motion analysis, Human reaching, Riemannian distance, Dynamics

1. INTRODUCTION

Humans and robots constitute a common structure:
a series of links that are connected through rotational
joints. During fast movements of such a multi-body sys-
tem, inertia-induced effects (i.e., inertia, centrifugal, and
Coriolis forces) are dominant except for robots with high
gear-ratio joints, and Lagrange’s equation of motion for
this multi-body system becomes intrinsically nonlinear.
A particle moves straight with no acceleration when there
is no external force or the sum of forces acting on the
particle is zero; this is generally known as the law of in-
ertia. In contrast, physical characteristics of motion of
a multi-body system in such a case have not yet been
shown explicitly. Very recently, it has been demonstrated
that inertia-induced movement of a multi-body system is
characterized by a geodesic curve corresponding to a Rie-
mannian distance in a Riemannian manifold [1].

A Riemannian distance is a technical term used in Rie-
mannian geometry which is an important branch of dif-
ferential geometry. The traditional Riemannian geome-
try focuses on a broad range of geometries whose met-
ric properties vary from point to point. Three decades
ago (1978), Arnold [2] noticed the importance of Rie-
mannian geometry in modeling, analysis, and control of
mechanical systems. Recently, Bullo and Lewis [3] have
shown that an equation of motion of a multi-body sys-
tem can be treated using Riemannian geometry. Thus,
Riemannian geometry can also deal with movement of a
multi-body system. Arimoto [4], introducing the ideas
of Riemannian geometry in Robotics independently of
Bullo and Lewis’s work, has shown that given a robot
as a multi-body mechanism with n degrees-of-freedom
(DOFs) and the free endpoint, the set of its all postures
can be regarded as a Riemannian manifold (M, g) as-
sociated with the Riemannian metric g that constitutes
the robot’s inertia matrix. On the basis of this fact, Ari-
moto et al. [5] have suggested the new movement stabil-
ity analysis (the nonlinear closed-loop dynamics analy-
sis) of a multi-joint robot arm with joint redundancy when
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Fig. 1 Planar movement of a human upper arm with two
joints

the passivity based control was applied to the system.
Then, a geodesic connecting any two postures with the
Riemannian distance corresponds to an orbit expressed
in a local coordinate chart and generated by a solution
to the Euler-Lagrange equation of robot motion originat-
ing only from inertia-induced force [1]. Furthermore,
the Riemannian-geometry viewpoint has been extended
to an important class of dynamics of multi-body systems
physically interacting with an object or with environment
through holonomic or/and nonholonomic (but Pfaffian)
constraints [5].

Aside from movements of a multi-joint robot, human
multi-body movements have attracted a lot of attention
and various studies have been conducted. The widely
known features of human skilled reaching by the arm are
a straight endpoint trajectory and a bell-shaped endpoint
velocity profile [6]. A lot of studies of human move-
ment including the above observations have focused on
the kinematic properties. However, fewer studies have
dealt with dynamics due to lack of mathematical tools for
analyzing dynamic characteristics of human movements.
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This paper aims at analyzing dynamic characteristics
of human arm reaching movements from the viewpoint of
Riemannian distance. In particular, this paper focuses on
how humans cope with dynamics of their own arms dur-
ing reaching. In order to analyze the role of arm inertial
properties in human movement, a measure for evaluating
the amount of inertia-induced movement of a multi-joint
arm, called an inertia-induced measure, is proposed. The
inertia-induced measure was used to analyze human pla-
nar reaching. It is shown that in smooth reaching, the cal-
culated inertia-induced measure profile has peaks at the
initial and final stages of motion and the measure values
are small during other stages of motion. However, the
values of the inertia-induced measure are relatively large
in general in clumsy reaching. Based on these observa-
tions, it is suggested that humans use their own inertia
properties efficiently in smooth reaching.

2. RIEMANNIAN DISTANCE:
INERTIA-INDUCED MOVEMENT OF
A MULTI-JOINT SYSTEM

Let us consider a multi-joint system with 7 rigid bod-
ies connected in series through rotational joints as shown
in Fig.1. If a posture of the system is represented by
p, the set of all such possible postures M and a fam-
ily of subsets of M can be determined naturally. Since
the set M becomes Hausdorff and compact as far as the
object is confined to multi-joint systems existing in the
real world, the set M with such a family of open sub-
sets can be regarded as a differentiable manifold of class
C® [7]. Furthermore, every point p of M has a neigh-
borhood U that is homeomorphic to an open subset 2
of n-dimensional numerical space R" constructed by lo-
cal coordinates (¢1, . . . , ¢, ), and such a homeomorphism
(¢ : U — Q) is called a coordinate chart. As the local
coordinates, it is reasonable to choose generalized coor-
dinates of the system, that is, the joint angles given in
gi € (—m, 7] (i =1,...,n) as defined in Fig.1.

Next, let I be an interval (—e,¢) and define a curve
¢(t) by a mapping ¢ : I — M such that ¢(0) = p. If for
any given curve ¢ a relation (~) is defined by

d(¢oc), . d(¢oc)
dt (0) = dt

cr~C+—= (0) (1)
in a coordinate chart (U, ¢) around p, then it becomes the
equivalence relation, and the equivalence class of curves
c: I — M is called a tangent vector to M at p. This
definition of tangent vectors to M at p does not depend
on choice of the coordinate chart at p, as discussed in the
textbooks [8, 9]. Furthermore, the set of all tangent vec-
tors to M at p is denoted by T, M and called the tangent
space at p € M. It has an n-dimensional linear space
structure like R".

Now, for a given n X n symmetric positive definite
matrix G(c(t)) whose (i, j)-entry is denoted by g;;, de-
fine a Riemannian metric in the differentiable manifold
(M, p) as a mapping g, : T,M x T,,M — R such that
p — gy is of class C* and, for u = u'(9/dq;) € T,M
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and v = v'(9/dq;) € T,M, g,(u,v) is a symmetric pos-
itive definite quadratic form:

gp(u,0) = > gij(p)u'v? ©)

4,j=1

Then, the manifold (M, p) can be regarded as a connected
Riemannian manifold and becomes complete as a metric
space. Hence, it is possible to define a length of ¢(t) € M
to be

b b
L(C(t))=/ IIé(t)lldt=/ \/ e (€(2), ¢(2)) di (3)

Then, since any connected Riemannian manifold be-
comes a metric space whose induced topology is coinci-
dent with the given manifold topology, it is also possible
to define a Riemannian distance d(p,p’) for any pair of
points p, p’ € M as the infimum of all admissible curves
from p to p’ as follows:

d(p,p') = inf L(c(t)) (4)

As described in the textbooks on Riemannian geometry
[8, 9], an admissible curve ¢ in a Riemannian manifold
is said to be minimizing if L(c) < L(¢) for any other
admissible curve ¢ with the same endpoints. It follows
immediately from the definition of distance that ¢ is mini-
mizing if and only if L(c) is equal to the distance between
the endpoints. Furthermore, it is known that if the Rie-
mannian manifold (M, g) is complete then for any pair
of points p and p’ there exists at least a minimizing curve
c(t), t € [a,b], with ¢(a) = p and ¢(b) = p’. If such
a minimizing curve ¢(t) is described with the aid of co-
ordinate chart (U, ¢) as ¢(c(t)) = (qi(t), -+ ,q. (1)) (=
q(t)) then it satisfies the 2nd-order differential equation:

G(t) + Y TH(a(t)di(t)g;(t) =0

i,j=1
where Ffj denotes Christoffel’s symbol defined by

1 9gin, | 0gjn  0gij
I‘\k P kh ( + Jh J 6
Y2 hzzlg dq; dq;  Ogy ©)

and (g*") denotes the inverse of matrix (gxs). A curve
q(t) : I — U satisfying eq.(5) together with ¢~ (q(t))
is called a geodesic and eq.(5) itself is called a geodesic
equation. Furthermore, the geodesic equation of eq.(5)
can be transformed, by multiplying eq.(5) from the left-
hand by (gx;), into

gradii(t) + Y Tars(a())di(t)d; (1) = 0

ij=1
where I';;,; denotes another Christoffel’s symbol defined
by

1 (Ogir | Ogjr  Ogij
Pitj = = - 8
S (3%' * dq;  Oqy ®)




Meanwhile, in mechanics and robotics, Lagrange’s
equation of motion of the multi-joint arm [10] is de-
scribed by:

H(a©)a(0) + { 3ta0) + S(a0).40) fa() = ul) ©)

where q(t) = (qi(t),...,q.(t))T denotes the vec-
tor of joint angles, H(q(t)) the inertia matrix,
S(q(t), q(t))q(t) the gyroscopic force term including
centrifugal and Coriolis forces, S(q(t), ¢(t)) the skew-
symmetric matrix, u« the control input torque at joints.
The inertia matrix H (g(t)) is symmetric and positive def-
inite. Furthermore, each entry h;; of H(q(t)) is a con-
stant or a sinusoidal function of components of joint an-
gle vector g(t). Hence, H(q(t)) is symmetric, positive
definite and differentiable of class C'*°.

Now, suppose that the inertia matrix h;; of the sys-
tem is chosen as g;; in the Riemannian metric defined by
eq.(2), i.e, gij = hy; fori,j = 1,...,n. Then, the left-
hand side of the geodesic equation of eq.(7) is coincident
with that of the system dynamics of eq.(9) because by
referring to the book [10] and the paper [7] it satisfies

1. -
{2H (a) +S(a, 4)} =Y Tay(0)isdy (10)
ij=1

Hence, the system dynamics with « = 0 is coincident
with the geodesic equation [7]. This means that if an in-
ertia matrix of system is chosen as g;; in the Rieman-
nian metric of eq.(2) then a geodesic ¢(t) represents a
motion from g(a) = p to g(b) = p’ over an interval
t € [a,b] without input torques in the physical sense,
that is, inertia-induced movement (pure inertia, Coriolis,
and centrifugal forces movement) of a multi-joint system.
Furthermore, the Riemannian distance itself, which is the
minimum in lengths determined by eq.(3) of all possible
motions from a posture p(= ¢(a)) to another p’(= ¢(b)),
corresponds to inertia-induced movement of a multi-joint
system. Note that a Riemannian distance itself is invari-
ant even if for given positive constants « and (3 the sub-
sidiary variable ¢ is replaced with s = at + [, that is, it
depends only on the endpoints p and p’ in the Riemannian
manifold as discussed in the textbooks [8,9].

3. INERTIA-INDUCED MEASURE

As described in the previous section, a length in eq.(3)
based on a Riemannian metric with a system inertia ma-
trix represents the amount of inertia-induced movement
of a multi-joint system. For some multi-joint movement
from a posture p(= ¢(a)) to another posture p’(= ¢(b)),
if the motion is far from the inertia-induced movement
(the geodesic orbit obtained by eq.(5) or (7)), the trajec-
tory length is longer than the Riemannian distance be-
tween the points p and p’. On the other hand, if the mo-
tion is similar to the geodesic orbit, the trajectory length
is close to the Riemannian distance. Note that a length of
any admissible curve ¢ between p and p’ in a Riemannian
manifold is more than or equal to a corresponding Rie-
mannian distance, i.e., L(c) > d(p,p’). Hence, a length
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of eq.(3) together with a Riemannian distance of eq.(4)
based on a system inertia matrix is available to evaluate
the amount of inertia-induced movement of a multi-joint
system.

In general, dynamics of an actual human or robot dif-
fer from the ideal dynamics shown by eq.(9) and contain
viscoelastic, Coulomb friction, and gravity forces. An
equation of motion of such complicated system can be
described by

H(g)i + {1H<q> + S(a. q)} §+Cq

2
+KAq+ f.+g(g)=u  (11)

where C'q denotes joint viscosities, K Aq denotes joint
elastics, f,. denotes a Coulomb friction, g(q) denotes the
gravity effect. Even in the case of such complicated dy-
namics it is possible to evaluate the amount of inertia-
induced movement of the system. Now, we focus on
some interval ¢ € [a,b] during the motion governed by
the dynamics of eq.(11) with w = 0. For a measured or-
bit of state variables of a system, a length corresponding
to the motion within [a, b] can be calculated by applying
the motion data to eq.(3) or the following expression

L= [ i G i (12)

On the other hand, the corresponding Riemannian dis-
tance between the postures g(a) and q(b) is available
from eq.(4). In more detail, the Riemannian distance
can be obtained by solving the two-point boundary value
problem under the geodesic equation of eq.(5) or (7) to-
gether with the two boundary conditions g(a) and g(b)
and applying the obtained geodesic orbit to eq.(12). Thus,
it is possible to evaluate the inertia-induced amount of the
target motion by comparing the obtained length with the
corresponding Riemannian distance. However, the eval-
uated motion must be far from the inertia-induced move-
ment because the other forces except the inertia-induced
force are exerted on the system. As another situation, we
consider the case that a control input torque

u=C4+KAq+ f.+4g(q) (13)

is applied to the system so as to cancel the forces ex-
cept the inertia-induced force. In this case, the calcu-
lated length must be close to the Riemannian distance,
hence, the evaluated motion should be close to the inertia-
induced movement. Thus, even if other forces except the
inertia-induced force are exerted on the system, it is pos-
sible to evaluate the amount of inertia-induced movement
of a multi-joint system. This is physically reasonable
given an analogy with a particle motion under action of
external forces.

Now, we suggest a measure to evaluate the amount of
inertia-induced movement of a multi-joint system on the
basis of physical properties of the Riemannian distance,
called inertia-induced measure. For an interval ¢ € [a, D]
arbitrarily set within movement, the measure is defined
by

R=1L—d(q(a),q(b)) (14)




Fig. 2 An experimental setup

where L denotes the length defined by eq.(12) and
d(g(a),g(b)) denotes the Riemannian distance defined
by eq.(4) between the postures g(a) and g(b). When
the motion is exactly equal to the inertia-induced move-
ment, the measure shows R = 0, while the measure has
the large values when the target motion is far from the
inertia-induced movement. Furthermore, we suggest the
normalized measure defined by

Ry = (L —d(q(a),q(b))) / d(q(a), q(b))

It is possible to set the interval ¢ € [a,b] according to
user’s demands. If transient effects are of interest, a small
interval should be set. However, if the inertia-induced
amount of motion is investigated over an entire move-
ment, the movement onset and offset times should be set
as the interval.

(15)

4. OBSERVATION OF REACHING FROM
THE VIEWPOINT OF RIEMANNIAN
DISTANCE

In order to investigate dynamic properties in human
reaching from the viewpoint of the inertia-induced mea-
sure, human planar reaching experiments were conducted
as shown in Fig.1. Figure 2 demonstrates an experimen-
tal setup for reaching experiments using a robotic sys-
tem Kinarm (BKIN Technologies, Canada). The subject
was sitting in a Kinarm chair with the arms resting on
two-joint robotic arms in the horizontal plane (see the pa-
per by Scott [11] for Kinarm description). The chair and
the robotic arm were adjusted so that the subject could
move the arms in the horizontal plane at a chest level.
The subject was instructed to reach as fast and accurately
as possible one of 8 targets, which appeared randomly on
the horizontal screen in front of the subject, with the in-
dex finger tip of right hand. The targets were circles of 1
[cm] in diameter arranged radially around the start posi-
tion 10 [cm] away from it. When the target was reached,
the color of target was changed so that the subject could
assess if the task was successfully accomplished. It dis-
appeared within 1 [s] of “touch” and the subject moved
the arm back to the initial (center) position and waited for
a next target to appear. After reaching all 8 targets in ran-
dom order (one trial), next trials of reaching movements
were performed until 20 trials were completed. The Ki-
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Fig. 3 Endpoint trajectories of 20 trials

Table 1 The arm parameters of the subject

Link number H 1 2
Length [m] 0.2780 0.4080
Center of mass [m] 0.1498 0.1456
Mass [kg] 2.001 1.621
Inertia moment [kgm?] || 1.023 x 1072 1.951 x 102

narm is capable of generating a force field imposed on
the arm through the motor-actuated torques applied at the
shoulder and elbow joints, but this function was not used
in the experiment. Figure 3 depicts endpoint trajectories
of all 20 trials of one subject. The joint angles and angu-
lar velocities of the arm were measured by the encoders
built in the robotic arm of Kinarm. The endpoint position
shown in Fig.3 was calculated from the kinematic infor-
mation of the arm: subject’s segment lengths and the joint
angles.

The evaluation of the inertia-induced measure was
conducted by using the obtained data. First, each move-
ment was divided into 30 segments according to move-
ment time. Next, for each interval the length of eq.(12)
and the Riemannian distance were calculated from the
data according to the procedure described in Section 3.
Finally, the values of the inertia-induced measure as de-
scribed by eqs.(14) and (15) were calculated by using the
calculated length and the Riemannian distance. These
steps were repeated for all 30 segments to obtain the pro-
files of the inertia-induced measure. The inertia matrix of
human arm required for the calculation of the length and
the Riemannian distance, i.e., the link inertias and link
mass, was estimated by referring to the book [12]. Table
1 shows the estimated arm parameters of the subject.

Figures 4 and 5 depict two typical results observed in
the experiment. Figure 4 shows mechanical characteris-
tics of reaching to target 2 in trial 13; Figure 5 shows the
same characteristics for trial 18. Each figure presents the
endpoint trajectory, the estimated kinetic energy profile,
the joint angle profile, the angular velocity profile, the
profile of the inertia-induced measure defined by eq.(14),
and the profile of the normalized measure defined by
eq.(15). The kinetic energy was calculated on the basis
of the estimated inertia matrix. It can be seen that the
motion in Fig.4 becomes clumsy around the target (i.e.,
the path curvature sharply changed). On the other hand,
a smooth reaching movement is observed in Fig.5, al-
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Fig. 4 Experimental results in the case of clumsy reach-
ing

though the end-point did not reach the target and passed
very close to it. The fact that the target was missed in
trial 18 does not present a problem since our concern in
the paper is the application of the inertia-induced mea-
sure analysis to human reaching rather than the reach-
ing performance. The profiles of the non-normalized and
normalized inertia-induced measure show that the val-
ues tend to be large around the initial and final stages
of movement. As discussed in Section 3, the quantity
R becomes small when the observed movement is close
to the inertia-induced movement and large when it is far
from it. Hence, it appears that the large R values coincide
with subject’s attempts to initiate or stop the arm at these
movement phases. In particular, during the clumsy reach-
ing, the subject attempted to move the arm and correct its
trajectory so as to reach the target at the final stage of
motion. The inertia-induced measure represents this be-
havior by large R values in Fig.4(e). On the other hand,
the results show that the R values tend to be relatively
small during other movement stages (e.g., middle stage)
especially if reaching is smooth (Figs.4 and 5). Based on
these results it can be suggested that humans take into ac-
count their own inertia properties and use them efficiently
during fast reaching motion.

The inertia-induced measure can also provide the
amount of inertia-induced movement over an entire
reaching motion by setting boundary conditions at the
start and end of motion. The overall amount of inertia-
induced movement was Ry = 10.1[%] in the clumsy
reaching, and Ry = 1.07[%] in the smooth reaching.
These results clearly illustrate the difference in dynamic
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Fig. 5 Experimental results in the case of smooth reach-
ing

properties between the two reaching movements. As dis-
cussed in Section 3, the length of eq.(12) depends not
only on the initial and final postures of the reaching mo-
tion within a predefined time interval, but also on move-
ment time. In contract, the Riemannian distance depends
only on the initial and final postures, regardless of move-
ment time. Hence, the normalized R measure can be use-
ful for comparing movements with different speed and
different Riemannian distance.

S. CONCLUSIONS

The inertia-induced measure was proposed to evalu-
ate the amount of inertia-induced movement of a multi-
joint system, and dynamic properties of human reaching
were analyzed by using this measure. An important ben-
efit of the measure is that it allows for analysis of inertia-
induced movement of a multi-joint system. The inertia-
induced measure can be used to evaluate the amount of
inertia-induced motion for variety of multi-joint move-
ments. The analysis can be used when a motion is subject
to gravity and external forces as long as the motion is pri-
marily governed by an inertia-induced force. Hence, we
plan to apply the inertia-induced measure to analyses of
other movements (for instance, human walking) in future
work.
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