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Abstract. Modeling and control of grasping an object with arbitrary shape by a pair of robot
fingers with hemispherical ends in a horizontal plane are proposed in a mathematical and com-
putational standpoint. The curvature of an object contour is variable due to the change of the
contact point between the finger tip and object surface. Therefore, not only the time parameter
“t” but also the arclength parameter “s” are needed to describe motion of the overall fingers-
object system. It is shown that Euler-Lagrange’s equation of motion of the overall fingers-object
system should be accompanied with the first-order differential equation of arclength parameter
“s”, which traces out the object contour and at the same time the finger-tip circle. A control
input, which is of the same category as the control input called “blind grasping”, is proposed
to stabilize rotational motion of the object. The control input does neither use the kinematics
information of the object nor any external sensing. Finally numerical simulations evaluate the
effectiveness of the proposed model and control input.
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1 INTRODUCTION

Hands have a lot of interesting properties such as redundant joint structure, soft material of
a fingertip, and rolling contact. Humans easily pinch an object without considering the object
shape. These facts have attracted many robotics researchers to analyze, model, control, and
create robot hands Refs.[1] and [2]. However, most researches in robotics remain in kinemat-
ics or motion planning, centering the realization of force/torque closure for a stable grasp in a
static sense. Rolling geometry between two objects with arbitrary shape was strictly discussed
Ref.[3]. The research, however, remains in kinematic or semi-dynamic meaning. On the other
hand, researchers in multibody dynamics have presented many models with constraints Refs.[4]
and [5] without modeling physical interaction between a robot finger and an object with arbi-
trary shape even in a two-dimensional case. In fact, modeling of pinching with rolling contact
that can take account of arbitrariness of the object shape has not yet been tackled.

Arimoto et al . Ref[6], around the year of 2000, first proposed a dynamic pinching model by
a pair of robot fingers with hemispherical ends under rolling constraints when the shape of a
pinched object is limited to flat surfaces. Stability of motion of the overall fingers-object system
called “Stability on a manifold” is rigorously discussed in a mathematical sense since rolling
constraints are reflected into the dynamics of the object as wrench vectors. The redundancy
resdution problem of pinching by means of a pair of fingers with redundant joints for a required
task is resolved in a local sense by applying the stability concept on an equilibrium manifold.
The control strategy based on index finger-thumb opposability for stabilizing motion of the
overall system, which is called “blind grasping”, is proposed Ref.[7], which does neither need
object kinematic information nor need external sensing. The pinching model was extended in
2006 to a three-dimensional case Ref.[7]. A mathematical model is derived as a set of equations
of motion of the fingers-object system under Pfaffian constraints due to rolling constraints and
differential equations representing infinitesimal rotations of the pinched object. The shape of
the 3D pinched object, however, has been restricted to flat surfaces.

In this paper, a new dynamical system with physical interaction, which expresses motion of
pinching a 2D object with arbitrary shape by a pair of robot fingers with hemispherical ends (see
Fig.1), is proposed and modeled in a mathematical and computational manner. The curvature
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Figure 1: A three-DOF finger robot manipulating a 2-D object pivoted at a fixed point
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of the object contour is variable according to the change of the contact point between the object
surface and the rigid finger tip. Therefore the fingers-object dynamic equations, which should
be accompanied with the update equation of arclength parameter “s”, are derived. A class
of control signals called “blind grasping” is proposed for realizing stable grasping, without
referring to object kinematics or using external sensing. It should be noted that the control
signal is of the same as that in the case treating an object with flat surfaces Ref.[7]. In the case
of one robot finger, the closed dynamics is derived, and it is shown that the given equilibrium
state is satisfied from the aspect of a numerical simulation. Finally numerical simulations are
carried out, for confirmation of the effectiveness of our proposed model and control input by
implementing the derived mathematical model of physical interaction of rolling with the aid of
a constrained stabilization scheme.

2 DYNAMICS

In order to show a key role of the rolling constraint, a mechanical setup of pinching a rigid
object with arbitrary shape by one robot fingers with 3 DOFs shown in Fig.1 is investigated. The
finger tip is made by rigid material and is of hemispherical shape. The object is pined at a point
Om and rotates around it. In the coordinate system, numerical values of all angles are positive
in counterclockwise direction. It is assumed that the xy-plane in the figure is horizontal and the
effect of the gravity is ignored. We introduce the local coordinate Om-XY fixed at the object
frame, and define unit vectors rX on the X axis and rY on the Y axis (see Fig.2). The left-side
contour of the object is expressed by a curve attached to the local coordinate (X(s1), Y (s1)) by
virtue of an arclength parameter s1 (see Fig.3). P1 is the contact point between the finger tip
and object surface, and n1 the normal unit vector to the tangent vector b1. The angle between
the vector n1 and X axis expressed by θ1 is determined as follows:

θ1(s1) = arc (X ′(s1)/Y ′(s1)) (1)
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Figure 2: Relationship between local coordinate O-XY and fingertip O01
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Figure 3: Geometrical relationship based on length parameter “s1”

where X ′(s1) = dX(s1)/ds1 and Y ′(s1) = dY (s1)/ds1. P1P ′
1 is expressed in the local coordi-

nate (X(s1), Y (s1)) as follows:

P1P ′
1 = ln1(s1) = −X(s1) cos θ1(s1) + Y (s1) sin θ1(s1) (2)

In contrast, P1P
′
1 is expressed in the inertia frame O-xy as follows:

P1P ′
1 = (x − x01) cos(θ + θ1) − (y − y01) sin(θ + θ1(s1)) − r1 (3)

Hence, the contact constraint between the finger tip and object surface is derived as the holo-
nomic constraint:

Q1 = −(x − x01) cos(θ + θ1(s1)) − (y − y01) sin(θ + θ1(s1)) = −(r1 + ln1(s1)) (4)

OmP ′
1 is expressed in the local coordinate (X(s1), Y (S1)) as follows:

OmP ′
1 = lb1(s1) = X(s1) sin θ1 + Y (s1) cos θ1 (5)

On the other hand, OmP ′
1 is expressed in the inertia frame as follows:

R1(t) = −(x − x01) sin(θ + θ1) − (y − y01) cos(θ + θ1) = lb1(s1) (6)

Rolling contact expresses that the robot finger tip rolls on the object surface without slipping.
Thus the object’s velocity along the vector b1 at the contact point P1 must be equal to the finger
tip’s velocity along the vector b1 at the point, at instant t, as follows:

r1
∂φ1

∂t
+

∂

∂t
R1(t) = 0 (7)
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where ϕ1 is defined as follows (see Fig.1):

ϕ1 = π + (θ + θ1) − (q11 + q12 + q13)

= π + (θ + θ1) − p1 (8)

where p1 = q11 + q12 + q13. Eq.(7) can fortunately be integrated in the sense of Frobenius (see
Ref.[8]). In fact, we define

R1(t, s1) = r1{θ + θ1(s1) − p1} + s1 + R1 − lb1(s1), (9)

and see that ∂R1(t, s1)/∂t = 0 is reduced to Eq.(7). It is found out that (see Ref.[8])

dR1

dt
=

∂R1

∂t
+

∂R1

∂s1

ds1

dt
= 0 (10)

Then it is possible to define

R̃1 = R1(t, s1(t)) − R1(0, s1(0)) (11)

By associating Lagrange’s multipliers f1 and λ1 with the constraints Q1 = 0 (Eq.4) and R̃1 = 0
(Eq.11) respectively, we define a Lagrangian:

L =
1

2
q̇T

1 G1q̇1 +
1

2
Iθ̇2 − f1Q1 − λR̃1 (12)

where q1 = (q11, q12, q13)
T, G1(q1) denotes the inertia matrix, and I denotes the inertia moment

of the object. By applying the variational principle, the dynamic equations of the overall finer-
object system are derived as follows:

Iθ̈ − f1lb1(s1) − λln1(s1) = 0 (13)

G1(q1)q̈1 +

{
1

2
Ġ1 + S1

}
q̇1 + f1J

T
1 (q1)n1(θ)λ1

{
JT

1 (q1)b1(θ) − r1e1

}
= u1 (14)

where e1 = (1, 1, 1)T, JT
1 = ∂(x01, y01)/∂q1,

n1(θ) =

(
cos(θ + θ1)
− sin(θ + θ1)

)
, b1(θ) =

(
sin(θ + θ1)
cos(θ + θ1)

)
(15)

and u1 stands for the control input. Because the arclength parameter s1 depends on the time
parameter t, the parameter s1 should be updated as follows:

ds1

dt
=

r1

1 + r1κ1(s1)

(
ṗ1 − θ̇

)
(16)

where κ1 denotes the curvature of the object contour at a contact as follows:

κ1(s1) = X ′′(s1)Y
′(s1) − X ′(s1)Y

′′(s1) (17)

It should be noted that the curvature κ1(s1) of the object contour appears in the update equation
(Eq.(16)) but not in the overall Lagrange’s equations (Eqs.(13) and (14)).
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3 CONTROL SIGNAL & CLOSED LOOP DYDAMICS

In order to immobilize rotational motion of the object, rotational motion “−f1lb1(s1) −
λ1ln1(s1)” must be zero. By analogy with our previous control signals called “blind grasping”
Ref.[7], we introduce the control input:

u1 = −c1q̇1 −
(

fd

r1

)
JT

1 (q1)

(
x01 − x
y01 − y

)
− r1N̂1e1 (18)

where

N̂1(t) = γ−1
1 r1 (p1(t) − p1(0)) (19)

γ1 and c1 are positive constants, and p1(0) an initial value of p1(t). The first term of the right
hand side of Eq.(18) plays a role of damping. The second term is introduced to cease the
rotational moment of the object. The third term is introduced for saving excess movements of
finger joints from the initial pose. Substituting the control input (Eq.18) into the overall finger
object system (Eqs.(13) and (14)) yields the following closed-loop dynamics:

Iθ̈ − Δf1lb1(s1) − Δλ1ln1(s1) + SN = 0 (20)

G1(q1)q̈1 +

{
1

2
Ġ1 + S1

}
q̇1 + Δf1J

T
1 n1(θ) + Δλ1

{
JT

1 (q1)b1(θ) − r1e1

}

+r1ΔN1e1 + c1q̇1 = 0 (21)

where

Δf1 = f1 − fd

r1
(r1 + ln1(s1)) , Δλ1 = λ1 +

fd

r1
lb1(s1) (22)

ΔN1 = N̂1 +
fd

r1
lb1(s1) (23)

SN = −fd

r1
(r1 + ln1(s1)) lb1(s1) +

fd

r1
lb1ln1 (24)

4 ALGORITHMC DESIGN OF THE SIMULATOR

In order to maintain the contact and rolling constraints (Eqs.(4) and (11)), it is convenient to
use the “Constraint Stabilization Method”(CSM) Ref.[9]. These algebraic equations are applied
to the CSM method, and the nonlinear 2-order simultaneous differential equations are obtained
as follows: ⎧⎨

⎩ Q̈1 + γf1Q̇1 + ωf1Q1 = 0
¨̃R1 + γλ1

˙̃R1 + ωλ1R̃1 = 0
(25)

where coefficiants called CSM gains should be chosen to satisfy critical damping conditions as

γf1 = 2
√

ωf1, γλ1 = 2
√

ωλ1 (26)

We define ⎧⎨
⎩

Q1q1 = ∂Q1

∂q1
, Q1θ = ∂Q1

∂θ
, Q1s1 = ∂Q1

∂s1

R̃1q1 = ∂R̃1

∂q1
, R̃1θ = ∂R̃1

∂θ
, R̃1s1 = ∂R̃1

∂s1

(27)
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Then, Eq.(25) is expressed as

QT
1q1q̈1 + Q1θ θ̈ + Q1s1s̈1 +

(
dQ1q1

dt
+ γf1Q1q1

)T

q̇1

+

(
dQ1θ

dt
+ γf1Q1θ

)T

θ̇1 +

(
dQ1s1

dt
+ γf1Q1s1

)T

ṡ1 + ωf1Q1 = 0 (28)

R̃T
1q1q̈1 + R̃1θ θ̈ + R̃1s1s̈1 +

(
dR̃1q1

dt
+ γλ1R̃1q1

)T

q̇1

+

(
dR̃1θ

dt
+ γλ1R̃1θ

)T

θ̇1 +

(
dR̃1s1

dt
+ γλ1R̃1s1

)T

ṡ1 + ωλ1R̃1 = 0 (29)

Since the constraints Q1 and R̃1 differentiated with respect to s1 fortunately become zero
Ref.[8], that is, Q1s1 = 0 and R̃1s1 = 0, the Equations (28) and (29) are reduced to

QT
1q1q̈1 + Q1θ θ̈ +

(
dQ1q1

dt
+ γf1Q1q1

)T

q̇1 +

(
dQ1θ

dt
+ γf1Q1θ

)T

θ̇1 + ωf1Q1 = 0 (30)

R̃T
1q1q̈1 + R̃1θ θ̈ +

(
dR̃1q1

dt
+ γλ1R̃1q1

)T

q̇1 +

(
dR̃1θ

dt
+ γλ1R̃1θ

)T

θ̇1 + ωλ1R̃1 = 0 (31)

where
dQ1q1

dt
=

∂Q1q1

∂q1

q̇1 +
∂Q1q1

∂θ
θ̇1 +

∂Q1q1

∂s1
ṡ1 (32)

dQθ

dt
=

∂Qθ

∂q1

q̇1 +
∂Qθ

∂θ
θ̇1 +

∂Qθ

∂s1
ṡ1 (33)

dR̃1q1

dt
=

∂R̃1q1

∂q1

q̇1 +
∂R̃1q1

∂θ
θ̇1 +

∂R̃1q1

∂s1

ṡ1 (34)

dR̃θ

dt
=

∂R̃θ

∂q1

q̇1 +
∂R̃θ

∂θ
θ̇1 +

∂R̃θ

∂s1

ṡ1 (35)

It is important to note that ṡ1 is obtained by the update equation of arclength parameter s1

(Eq.(16)). By virtue of these equations (Eqs.(30) and (31)) including the object shape parame-
ters s1 and ṡ1, dynamics of the overall finger-object system under the constraints composed of
Eqs.(13), (14), (30), and (31) can be expressed as⎛

⎜⎜⎜⎜⎝
G1 0 Q1q1 R̃1q1

0 I Q1θ R̃1θ

Q1q1 Q1θ 0 0

R̃1q1 R̃1θ 0 0

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

q̈1

θ̈
f1

λ1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

h1

h2

h3

h4

⎞
⎟⎟⎟⎠ (36)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

h1 = u1 −
{

1
2
Ġ1 + S1

}
q̇1

h2 = 0

h3 = −
{(

dQ1q1

dt
+ γf1Q1q1

)T
q̇1 +

(
dQ1θ

dt
+ γf1Q1θ

)T
θ̇1 + ωf1Q1

}

h4 = −
{(

dR̃1q1

dt
+ γλ1R̃1q1

)T

q̇1 +
(

dR̃1θ

dt
+ γλ1R̃1θ

)T
θ̇1 + ωλ1R̃1

} (37)
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The 2nd-order 6-simultaneous differential equations (eq.(36)) and first-order differential equa-
tion of arclength parameter “s1” (eq.(16)) should be solved simultaneously so that they satisfy
the principle of causality. A Runge-Kutta method can be applied to solve this differential sys-
tem. The matrix of Eq.(36) is nonsingular in the situation considered in Fig.1, and the inversion
of it can be carried out.

5 Numerical Simulation -PART I-

A numerical simulator is constructed, as discussed the previous chapter by using physical
parameters of the finger-object system given in Table 1. Numerical simulation is carried out
by applying our proposed control input (Eq.18) with the parameters of control gains and CSM
gains given in Table 2 to the overall finger-object system (Eqs.(13) and (14)), in order to eval-
uate the stability of motion of the overall system. The curves c(s1) with local coordinates

Table 1: Physical parameters of the fingers and object.

l11 length 0.065 [m]
l12 length 0.039 [m]
l13 length 0.026 [m]
m11 weight 0.045 [kg]
m12 weight 0.025 [kg]
m13 weight 0.015 [kg]
ri(i = 1, 2) radius 0.010 [m]
L base length 0.063 [m]
M object weight 0.040 [kg]

Table 2: Parameters of control signals & CSM gains

fd internal force 1.000 [N]
c damping coefficient 0.006 [Nms]
γ1 regressor gain 0.001 [s2/kg]
γf1 CSM gain 1500
γλ1 CSM gain 3000
ωf1 CSM gain 225.0 × 104

ωλ1 CSM gain 900.0 × 104

(X(s1), Y (s1)) is used in the simulations is given

X(s1) = −0.03 +

√
1 + 4 × 502 × s2

1

2 × 50
(38)

Y (s1) =
Asinh(2 × 50 × s1)

2 × 50
(39)

It is noted that, because s1 is the arclength parameter,
√

X ′(s1)2 + Y ′(s1)2 = 1. The initial val-
ues of the simulation must be chosen to satisfy the rolling and contact conditions for execution
of the simulation. The motion obtained by the simulation is depicted in Fig.4. If the closed-loop
dynamics Eqs.(20) and (21) converge to the equilibrium state, it should satisfy

q̈1 → 0, θ̈ → 0, q̇1 → 0, θ̇ → 0, −Δf1lb1(s1) − Δλ1ln1(s1) + SN → 0, (40)
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(a) Initial pose (b) After 5 seconds

Figure 4: Motion of pinching a 2-D object with arbitrary shape by one robot finger
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Δf1J
T
1 n1(θ) + Δλ1

{
JT

1 (q1)b1(θ) − r1e1

}
+ r1ΔN1e1 → 0, as t → ∞ (41)

In fact, we confirm Δf1 → 0, Δλ1 → 0, ΔN1, and SN → 0, which mean the convergence to
the equilibrium state (Eqs. (40) and (41)) to some extent of satisfaction as shown in Figs 5 ∼ 9.
The stable grasping is confirmed from the results of numerical simulation.
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6 DYNAMICS -PART II-

In this section, the modeling and control proposed by the previous sections are extended to
the stability problem of pinching an object by a pair of robot fingers. Similarly to θ1 (Eq.(1)),
θ2 (see Figs.11 and 12) is determined as follows:

θ2(s2) = arct (X ′(s2)/Y ′(s2)) (42)

where X ′(s2) = dX(s2)/ds1 and Y ′(s2) = dY (s2)/ds2. Similarly, the contact constraint of
the left side of the object is derived as the holonomic constraint:

Q2 = (x − x02) cos(θ + θ2(s2)) − (y − y02 sin(θ + θ2(s2))) = −(r2 + ln2(s2)) (43)

where

ln2(s2) = X(s2) cos θ2(s2) − Y (s2) sin θ2(s2) (44)

In a similar way, the rolling constraint at the right hand finger is derived as follows:

r2
∂φ2

∂t
+

∂

∂t
R2(t) = 0 (45)

where

R2(t) = −(x − x02) sin(θ + θ2(s2)) − (y − y02) cos(θ + θ2(s2)) = lb2(s2) (46)

lb2(s2) = X(s2) sin θ2(s2) + Y (s2) cos θ2 (47)

ϕ2 = −π + (θ + θ2) − (q21 + q22)

= −π + (θ + θ2) − p2 (48)
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Figure 10: A pair of robot fingers grasping an object with arbitrary shape
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and p2 = q21 + q22. Equation (45) can be integrated as discussed in Eq.(7) (see Ref.[8]).
Similarly we difine

R̃2 = R2(t, s2(t)) − R2(0, s2(0)) (49)

where

R2(t, s2) = −r2{θ + θ2(s2) − p2} + s2 + R2 − lb2(s2) (50)
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and ∂R2(t, s2)/∂t = 0 leads to Eq.(45). It is possible to confirm the following (see Ref.[8]):

dR2

dt
=

∂R2

∂t
+

∂R2

∂s2

ds2

dt
= 0 (51)

By associating Lagrange’s multipliers fi and λi (i = 1, 2) with the constraints Qi and R̃i (i =
1, 2) respectively, we define a Lagrangian:

L =
∑

i=1,2

1

2
q̇T
i Gi(qi)q̇i +

1

2
M(ẋ2 + ẏ2) +

1

2
Iθ̇2 − λ1R̃1 − λ2R̃2 − f1Q1 − f2Q2 (52)

where q2 = (q21, q22)
T, G2(q2) denotes the inertia matrix for finger 2, M denotes the mass

of the object. From the variational principle, the Lagrange equation of motion of the overall
fingers-object system is derived:

Gi(qi)q̈i +
{

1

2
Ġi + Si

}
q̇i − fiJ

T
i (qi)ni − λi

{
JT

i (qi)bi − riei

}
= ui, i = 1, 2 (53)

M(ẍ ÿ)T + f1n1 + f2n2 + λ1b1 + λ2b2 = 0 (54)
Iθ̈ − f1Y1 + f2Y2 + λ1ln1 − λ2ln2 = 0 (55)

where e2 = (1, 1)T, JT
2 = ∂(x02, y02)/∂q2,

n2(θ) =

(
cos(θ + θ2)
− sin(θ + θ2)

)
, b2(θ) =

(
sin(θ + θ2)
cos(θ + θ2)

)
(56)

Similarly the parameter s2 should be updated as follows:

ds2

dt
= − r2

1 + r2κ2(s2)

(
ṗ2 − θ̇

)
(57)

where κ2 denotes the curvature of the right side of the object contour as follows:

κ2(s2) = −X ′′(s2)Y
′(s2) + X ′(s2)Y

′′(s2) (58)

7 Control Signal -PART II-

In this chapter, we extend our proposed control input (Eq.(18)) to the model of two robot
fingers pinching an object with arbitrary shape. The control scheme is of the same category as
the control input called “blind grasping” Ref.[8], which need neither use the kinematic infor-
mation of the object nor use any external sensing; It is possible to stabilize the object without
consideration of the difference between the two sides of the object’s contour. The control input
is proposed as follows:

ui = −ciq̇i −
(

fd

r1 + r2

)
JT

i (qi)

(
x01 − x02

y01 − y02

)
− riN̂iei, i = 1, 2 (59)

where

N̂i(t) = γ−1
i r1 (pi(t) − pi(0)) , i = 1, 2 (60)

γi and ci(i = 1, 2) are positive constants, and pi(0) initial values of pi(t) for i = 1, 2. The first
and third terms are of the same meaning as Eq.(18). The second term is a signal based upon the
opposable force between O01 and O02.
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8 Numerical Simulation -PART II-

The construction method of the simulator stated in the chapter 4 is extended to the model
of two robot fingers shown in Fig.10. We construct a numerical simulator based on physical
parameters of the fingers-object system given in Table 3. Numerical simulation is executed with

Table 3: Physical parameters of the fingers and object.

l11 = l21 = l22 length 0.065 [m]
l12 length 0.039 [m]
l13 length 0.026 [m]
m11 weight 0.045 [kg]
m12 weight 0.025 [kg]
m13 weight 0.015 [kg]
m21 weight 0.045 [kg]
m22 weight 0.040 [kg]
ri(i = 1, 2) radius 0.010 [m]
L base length 0.063 [m]
M object weight 0.040 [kg]

Table 4: Parameters of control signals & CSM gains

fd internal force 0.500 [N]
c damping coefficient 0.006 [Nms]
γi(i = 1, 2) regressor gain 0.001 [s2/kg]
γfi(i = 1, 2) CSM gain 1500
γλi(i = 1, 2) CSM gain 3000
ωfi(i = 1, 2) CSM gain 225.0 × 104

ωλi(i = 1, 2) CSM gain 900.0 × 104

our proposed control input (Eq.59) using the parameters of control gains and CSM gains given in

(a) Initial pose (b) After 10 seconds
Figure 13: Motion of pinching a 2-D object with arbitrary shape by a pair of robot fingers
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Table 4, in order to confirm the stability of motion of the overall fingers-object system (Eqs.(53)
∼(55)). The curves c(si),(i=1, 2) with local coordinates (X(si), Y (si)) in the simulations are
given as follows (see Fig.11):

X(s1) = −0.03 +

√
1 + 4 × 502 × s2

1

2 × 50
(61)

Y (s1) =
Asinh(2 × 50 × s1)

2 × 50
(62)

X(s2) = 0.065 −
√

1 + 4 × 102 × s2
2

2 × 10
(63)

Y (s2) =
Asinh(2 × 10 × s2)

2 × 10
(64)

Motion of the overall fingers-object system is shown in Fig.13. The results of simulation show
that all velocities of the dynamic equations (Eqs.(53) ∼ (55)) converge to zero, and that all
Lagrange’s multipliers converge to some constant values according to Figs.15 ∼ 18 and 23 ∼
27. These results mean that motion of the overall system converges to some equilibrium state,
and stable grasping is finally achieved from the viewpoint of numerical simulation.

9 CONCLUSION

In this paper, motion of the overall finger-object system with the arbitrary shape of an object
is modeled in a mathematical and computational manner, and the system is extended to the
mechanical setup of pinching an object by a pair of robot fingers. A control input is proposed
to stabilize the object, in terms of neither the object kinematic information nor any external
sensing. The control input is of the same as that in the case of handling an object with flat
surfaces, despite the difference between object shapes. A design methodology of a numerical
simulator is presented in our model. The proposed constraint stabilization method, including
the arclength parameter “s” expressing the object posture and “ds/dt” obtained by the update
equation of “s”, plays the crucial role to maintain the both contact and rolling constraints, during
carrying out numerical simulations. These results based on the methodology demonstrate to
confirm the stability of motion of the overall system and the effectiveness of our proposed
control signals.
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